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THE NATURAL LOGARITHM AS A FUNCTION OF A SUM:
The A Approximation

From the di-gamma function, we have:

©) =1
b=yt Ly

n=1
0) 1
v~ in(z) - 4
We have the Euler gamma constant defined as

y = 0.57721566
e

We combine the two equations:

z—1
1
In(z) = A = 217+ — Y
n

e

We denote the natural log approximation as A. The following Python code is programmed
to compare this approximation with the natural log.



## Analyzing 1ln as a sum ##
import math

counter = 0 ## Initiate
z = 2
sigma sum = 0

gamma = 0.5772156649

big sum = 0

while counter < 25:
sigma sum = sigma sum + (1 / (z-1))
big sum = sigma sum + (1 / (2 * z
In = math.log(z)
print (z, "\t", £"{ln:.10f}"™, "\t",
f"{big sum:.10£}", "\t",
f"{sigma sum:.10£}", "\t", £"{(1 /
(2*z)):.10£}r"™, "\t", -0.57721566)
z =z + 1

counter = counter + 1

)) - gamma



To analyze the accuracy of the approximation, we run the code. Note that the first
column is z the second is the natural log, the third is the approximation and the fourth,
fifth, and sixth are the terms of the approximation in the order they appear in the equation

above.
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In

0.69314718
1.09861229
1.38629436
1.60943791
1.79175947
1.94591015
2.07944154
2.19722458
2.30258509
2.39789527
2.48490665
2.56494936
2.63905733
2.70805020
2.77258872
2.83321334
2.89037176
2.94443898
2.99573227
3.04452244
3.09104245
3.13549422
3.17805383
3.21887582
3.25809654

A

0.672784340
1.089451007
1.381117673
1.606117673
1.789451007
1.944212911
2.078141483
2.196197038
2.301752594
2.397207139
2.484328352
2.564456557
2.638632381
2.707680000
2.772263333
2.832925098
2.890114640
2.944208208
2.995523997
3.044333521
3.090870318
3.135336721
3.177909184
3.218742518
3.257973287

z—1
y 1
n=1 "
1.000000000
1.500000000
1.833333333
2.083333333
2.283333333
2.450000000
2.592857143
2.717857143
2.828968254
2.928968254
3.019877345
3.103210678
3.180133755
3.251562327
3.318228993
3.380728993
3.439552523
3.495108078
3.547739657
3.597739657
3.645358705
3.690813250
3.734291511
3.775958178
3.815958178

1

2z

0.250000000
0.166666667
0.125000000
0.100000000
0.083333333
0.071428571
0.062500000
0.055555556
0.050000000
0.045454546
0.041666667
0.038461539
0.035714286
0.033333333
0.031250000
0.029411765
0.027777778
0.026315790
0.025000000
0.023809524
0.022727273
0.021739130
0.020833333
0.020000000
0.019230769

Y

e

-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566
-0.57721566



NUMERIC ANALYSIS AND INCREASED PRECISION:
THE © APPROXIMATION

We now run the program to display the difference between the natural log and the

approximation. The § is the difference by subtraction; its inverse is also given.

N
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In

0.6931471806
1.098612289
1.386294361
1.609437912
1.791759469
1.945910149
2.079441542
2.197224577
2.302585093
2.397895273

2.48490665
2.564949358

2.63905733
2.708050201
2.772588722
2.833213344
2.890371758
2.944438979
2.995732274
3.044522438
3.091042453
3.135494216

3.17805383
3.218875825
3.258096538

A

0.6727843400
1.0894510067
1.3811176733
1.6061176733
1.7894510067
1.9442129114
2.0781414829
2.1961970384
2.3017525940
2.3972071394
2.4843283515
2.5644565567
2.6386323808
2.7076799999
2.7722633332
2.8329250979
2.8901146404
2.9442082077
2.9955239971
3.0443335210
3.0908703175
3.1353367207
3.1779091844
3.2187425178
3.2579732870

d

0.0203628455
0.0091612869
0.0051766927
0.0033202440
0.0023084675
0.0016972425
0.0013000637
0.0010275438
0.0008325039
0.0006881383
0.0005783031
0.0004928057
0.0004249537
0.0003702061
0.0003253939
0.0002882510
0.0002571224
0.0002307764
0.0002082813
0.0001889217
0.0001721408
0.0001575002
0.0001446508
0.0001333120
0.0001232559

6_1

49.1090502
109.1549703
193.17353
301.1826841
433.1878256
589.1909873
769.1930653
973.1945024
1201.195537
1453.196306
1729.196893
2029.197352
2353.197718
2701.198015
3073.198259
3469.198462
3889.198635
4333.198782
4801.19891
5293.199022
5809.199121
6349.19921
6913.199291
7501.199365
8113.199434



[ have highlighted the inverted deltas which allow us to see the pattern. We will zero-in on

6;1 — 301.183

Utilizing this value, we can see that the pattern within the inverse deltas can be described
by the sigma value:

This allows us to adjust the equation of approximation. Let’s denote the modified
approximation as 0.

1 1 1 1
O=2yt+tmto Y
n=1

The Python code is modified to include this term.

## Analyzing 1ln as a sum ##
import math

counter = 0 ## Initiate
z = 2
sigma sum = 0

gamma = 0.5772156649
big sum = 0

while counter < 25:

sigma sum = sigma sum + (1 / (z-1))
big sum = sigma sum + (1 / (2 * z)) - gamma
super big sum = big sum + (1 / ((z / 5)**2 *

301.1831285792))

1ln = math.log(z)

print (z, "\t", f£"{ln:.10f}"™, "\t",
f"{super big sum:.10f}", "\t",
f"{big sum:.10f}")

z =z + 1

counter = counter + 1



This table displays the results of the natural log, the modified approximation 0, and the
initial approximation A. The reader will observe that the modification significantly

improves the precision of the approximation.

. . . -1, . . .
The © equation is not quite correct; the use of 65 is good, but our next analysis will provide

a better solution.
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In

0.6931471806
1.098612289
1.386294361
1.609437912
1.791759469
1.945910149
2.079441542
2.197224577
2.302585093
2.397895273

2.48490665
2.564949358

2.63905733
2.708050201
2.772588722
2.833213344
2.890371758
2.944438979
2.995732274
3.044522438
3.091042453
3.135494216

3.17805383
3.218875825
3.258096538

0

0.6935358344
1.098673893
1.386305547
1.609437912
1.791756728
1.945906911
2.079438451
2.197221804
2.302582654
2.397893139
2.484904782
2.564947716
2.639055881
2.708048915
2.772587575
2.833212316
2.890370832
2.944438141
2.995731512
3.044521743
3.091041817
3.135493632
3.178053292
3.218875327
3.258096077

A

0.67278434
1.089451007
1.381117673
1.606117673
1.789451007
1.944212911
2.078141483
2.196197038
2.301752594
2.397207139
2.484328352
2.564456557
2.638632381
2.70768
2.772263333
2.832925098
2.89011464
2.944208208
2.995523997
3.044333521
3.090870318
3.135336721
3.177909184
3.218742518
3.257973287



MODULAR ANALYSIS: THE © APPROXIMATION

Let us return to the A approximation and examine the inverse deltas. The reader will
notice that, when rounded down to an integer, each inverse delta q takes the form

q=k-12+ 1 or q = 1(mod 12)

Primes are denoted with shading (where decimals are ignored).

z In A 5 q equation

2 0.6931471806  0.6727843400  49.109 49 =412 + 1
3 1098612289  1.0894510067 109.155 109 =9 - 12 + 1
4 1386204361  1.3811176733 193174 193 = 16 - 12 + 1
5 1609437912 1.6061176733  301.183 301 = 25 - 12 + 1
6 1791759469 17894510067 433.188 433 = 36 - 12 + 1
7 1945010149 1.9442129114 589191 589 = 49 - 12 + 1
8 2079441542  2.0781414829 769193 769 = 64 - 12 + 1
9 2197224577 21961970384 973195 973 = 81 - 12 + 1
10 2302585093  2.3017525940 1201.196 1201 = 100 - 12 + 1
11 2397805273  2.3972071394 1453196 1453 = 121 - 12 + 1
12 248490665 24843283515 1720197 1729 = 144 - 12 + 1
13 2564949358  2.5644565567 2029.197 2029 = 169 - 12 + 1
14 263905733 26386323808 2353.198 2353 = 196 - 12 + 1
15 2708050201  2.7076799999 2701.198 2701 = 225 - 12 + 1
16 2772588722 2.7722633332 3073.198 3073 = 256 - 12 + 1
17 2.833213344  2.8329250979 3469.198 3469 = 289 - 12 + 1
18 2.890371758  2.8901146404 3889.199 3889 = 324 - 12 + 1
19 2044438979  2.9442082077 4333.199 4333 = 361 - 12 + 1
20 2095732274  2.9955239971 4801.199 4801 = 400 - 12 + 1
21 3044522438 3.0443335210 5293.199 5203 — 441 - 12 + 1
22 3091042453  3.0908703175 5809.199 5809 = 484 - 12 + 1
23 3135494216 3.1353367207 6349.199 6349 = 529 - 12 + 1
24 317805383  3.1779091844 6913.199 6913 = 576 - 12 + 1
25 3218875825  3.2187425178 7501.199 7501 = 625 - 12 + 1
26 3058006538  3.2579732870 8113.199 8113 = 676 - 12 + 1



This analysis makes clear the imperfection in the previous analysis. The improved
adjustment is given by the sigma:

02=Zz-12+1

The new equation, denoted by ®, is

z—1
1 1 1
=2t to Ty,
n=1 2

The Python code is augmented to include this improvement.

## Analyzing 1ln as a sum ##
import math

counter = 0 ## Initiate
z = 2
sigma sum = O

gamma = 0.5772156649
big sum = 0

while counter < 25:
sigma sum = sigma sum + (1 / (z-1))
big sum = sigma sum + (1 / (2 * z)) - gamma
mod value = z**2 * 12 + 1
super mod big sum = big sum + (1 / mod value)
super big sum = big sum + (1 / ((z / 5)**2 *
301.1831285792))
In = math.log(z)
print (z, "\t", f£"{ln:.10f}", "\t",
f"{super mod big sum:.10£}", "\t",
f"{super big sum:.10f}", "\t",
f"{big sum:.10f}")
z =z + 1

counter = counter + 1



The table displays the improved precision of ® with the greatest level of improvement in

the initial z values.
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In

0.693147181
1.098612289
1.386294361
1.609437912
1.791759469
1.945910149
2.079441542
2.197224577
2.302585093
2.397895273
2.484906650
2.564949358
2.639057330
2.708050201
2.772588722
2.833213344
2.890371758
2.944438979
2.995732274
3.044522438
3.091042453
3.135494216
3.178053830
3.218875825
3.258096538

)

0.693192503
1.098625319
1.386299021
1.609439933
1.791760476
1.945910704
2.079441873
2.197224788
2.302585233
2.397895371
2.484906721
2.564949410
2.639057370
2.708050233
2.772588748
2.833213365
2.890371776
2.944438995
2.995732287
3.044522450
3.091042464
3.135494226
3.178053839
3.218875833
3.258096546

C)

0.6935358344
1.098673893
1.386305547
1.609437912
1.791756728
1.945906911
2.079438451
2.197221804
2.302582654
2.397893139
2.484904782
2.564947716
2.639055881
2.708048915
2.772587575
2.833212316
2.890370832
2.944438141
2.995731512
3.044521743
3.091041817
3.135493632
3.178053292
3.218875327
3.258096077

A

0.67278434
1.089451007
1.381117673
1.606117673
1.789451007
1.944212911
2.078141483
2.196197038
2.301752594
2.397207139
2.484328352
2.564456557
2.638632381
2.70768
2.772263333
2.832925098
2.89011464
2.944208208
2.995523997
3.044333521
3.090870318
3.135336721
3.177909184
3.218742518
3.257973287



The approximation is modeled using the Desmos graphing calculator.

The natural log is displayed in red. The phi approximation is displayed in green. Image by author.
Powered by Desmos.

REMARK ON THE MODULAR PHENOMENON

[ have tested the output up to z = 36 and can confirm that all results conform to
q = 1(mod12)

However long this pattern continues, it is well established. For example, where z = 100,

s ' = 120001
100

which is clearly withing = 12 - k + 1.
According to my investigations, the numbers of this subset come in two types: They
are either the sum of squares or the product of primes, each prime occurring only once. I

have tested this on all numbers g = 1 (mod 12) less than 400 and all numbers occurring
in the subset o, = Z° - 12 + 1 for all values of o, up to 8113. In the first subset, the vast

majority of numbers are a sum of squares; in the latter, the ratio is closer to equal.



FUNCTION FOR THE n APPROXIMATION OF THE EULER GAMMA

We can plot the following functions:

y = Inx
Co
y = X
n=1
X
y=Inx — Z%
n=1

The result is the following graph:

The natural log is displayed in red. The summation function is displayed in blue. The
difference is displayed in purple. Image by author. Powered by Desmos.

The reader will notice that the right edge of the difference tends towards Y, corresponding

tosomen + 0.5. This allows us to write a program to tease out only these leading-edge
values for any n . I include a Python version of the program here.



### ESTIMATION OF GAMMA ETA
import math

### Initiate Values

harmonic = 0
In =0
gamma_eta = 0
go =1
while go == True:
n = int (input ("To what wvalue of n the gamma? "))
if n == 0: ### End program condition
go = 0

print ("End of line.")
break

### Calculate Values
harmonic = 0

for 1 in range(l, n + 1):

harmonic = harmonic + 1 / 1
In = math.log(n + 0.5)
gamma_eta = 1n - harmonic

### Print result in columns up to 10 decimal places
print (n, "\t", f£"{harmonic:.10}", "\t", f£"{1ln:.10}",
"\t", f"{gamma eta:.10}")



[ include sample outputs from the program:

To what value of n the gamma? 10

10 2.928968254 2.351375257 -0.5775929968
To what value of n the gamma? 20

20 3.597739657 3.020424886 -0.577314771

To what value of n the gamma? 100

100 5.187377518 4.610157727 -0.5772197901
To what value of n the gamma? 200

200 5.878030948 5.300814247 -0.5772167014
To what value of n the gamma? 300

300 6.28266388 5.705447754 -0.5772161263
To what value of n the gamma? 1000

1000 7.485470861 6.908255154 -0.5772157065

The reader will observe the result that as n approaches infinity, the limit approaches the
Euler gamma constant.

A CASE FOR THE LOGARITHMS OF NEGATIVE ARGUMENTS AS “DEFINED”

In orthodox practice, the logarithms of negative numbers are “undefined.” This is
due to the fact that the negative arguments lead to impossible contradictions. Yet here [ will
argue that negative arguments are possible. If we allow the natural logarithm to be defined
as

z—1
_ oy 1
() = % S+ 5+ Y,
n=

then, analyzing each component, it is quite clear that each component can have a negative



value. Clearly, the second, third, and fourth terms can have negative values. The sum may
have a negative value as well—for example, as if summing backwards on the number line by
using negative values for n and z—but this would equate to simply completing the sum in
the usual way and multiplying the result by negative one. So then, the result would be

z—1
1 1 1
n(-z) = - 217 T T Ve
n=

To examine what this might mean visually, we can investigate the Euler identity:

We use this identity to understand logs:
In (em) = In(-1)
it = In (-1)
Generalizing for any value x:
In(-1)=in
mx)+n(-1)=nkx)+ in
In(-x)=Inx)+ in

What remains is to interpret the meaning of it in the final equation. It is understood that i
signifies rotation and that m represents half of a complete rotation; therefore, it is
equivalent to a flip. This is supported by the idea that

In(-1)=in
In (iz) = im
2Ini = in
Ini =i~

where the latter equation represents a 90 degree rotation. So if a 180 degree rotation
represents a flip, it remains to ask whether

In(-x)=-In(x)



indicates a vertical or horizontal flip. If we resort to the initial argument—that of
multiplying the four terms of the @ approximation by negative one—then a vertical flip
seems to be the result as imaged in this graph.

The ® approximation and the natural log are displayed in green; their negative
counterparts in red. Image by author. Powered by Desmos.

The astute mathematician may argue that this is merely a special case of complex
logarithms, and it is difficult to argue against that. In any case, the result is that negative
numbers are replaced with rotations such that the contradictions inherent in negative
logarithmic arguments are removed.

EULER’S e AS THE SURFACE OF A SPHERE

We have observed above the following:

iT
e = -1

In (em)

mx)+ In(-1))=In(x)+ in

In(-1)

In(-x)=Inx)+ in



Notice that the final equation can be expressed in two dimensions as shown on the graph.
So then, what is the dimensionality of the Euler Identity? Generally, we find that taking the
natural log of an expression reduces dimensionality because it produces a numeric result.
Yet if the reduced dimension is two, then I will posit that the original dimension is three.

Let us first be reminded from where Euler’s Identity is derived. In 1712 Roger Cotes,
in his attempt to find the surface area of an ellipsoid, found in the relationship of two of his
equations, that

In(cosd + isind) = idp
Euler’s Formula can be derived directly from this equation in two steps:

eln (cos ¢ + isin d) _ eicb ¢

- cosPp + isind = e
Euler, seemingly unaware of Cote’s result, published the formula in 1748 in the form,
ix . .
e =cosx +1sinx
which he derived by arranging series for e, sine and cosine (Wilson, 2017, p.12).
Here [ use theta as it is commonly used for angles in education.

i0 ..
e =cos0 +isin0

A special case occurs when 8 = m:

em=cosn+isinn=1+0=1

This is the famous Euler’s Identity.

[ will now demonstrate how this formula represents the surface of a sphere.
Consider a three-dimensional reference frame where i is vertical, x is horizontal, and y is
depth, where + y is “out of the page” and — y is “into the page.” Imagine the radius as a
vector originating from the origin. Finally, consider the postulation that

cos (i0) = icos B

The logic is: Since i is a rotation, the argument (i0) represents a 90 degree rotation, and this
does not vary inside or outside of the trigonometric argument.

Using this postulation, a chart can be built with various angles. The value ris
included as a proof of a spherical space, since the radius r of a unit sphere must always
equal 1. The value 2m is used in place of 6 = 0.
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Let’s look at how the math works beginning with the % variants. First, % results in i, and

this is correct as it is the standard y-position—that is, the vertical “top” of the unit circle;
T

>-iresults in -1 for y, indicating a rotation from the “top” that circles “into the page”; -

2
results in -i, the vertical “bottom” of the circle; and —%i results in 1 for y, a rotation from
the “bottom out from the page” or from the “top” circling contrariwise “out of the page”—it
all depends on if the reader wants to treat the % or the i as negative. To observe the

rotations from cosine, we can examine the 8 = 1 variants. The result of 1t is -1 for x, which
is correct; for mi, the result is —i, indicating a counterclockwise rotation; for —m, the result is
-1 for x, which is correct; and for -mi, the result is i, indicating a clockwise rotation from -1.
[ will now reduce the table by eliminating negative angles.

eie: cosO + isinO;r =\/|a2+b2|
0 RESULT r 0 RESULT r
N I I T D !
i _\Zéi__\zé 1 i 0i — 1 1
Sn SE *y 1 T — 1+ 0i 1
L, 2y 1 <L 0i + 1 1
i %—@i 1 21 1+ 0 1
I S 1 2mi i—0 1

This table is helpful because it contains only the 14 points of interest (six points
representing the top, bottom, front, back, and side points, and two planar sets of four points
between each of those pairs). Two redundancies occur as i and -i result in both sine and



cosine rotations. For 6 = %, the x position is % “to the right” and the i position is ﬁi

2
\/7 \/Eu

. . T . . 2 .
“up,” which is correct; —-i results in —=i (x rotates “up”) and — ——

And so forth.
[ apologize for the poor wording of this section. I understand that, mathematically,
examples do not constitute a proof. But I do believe these examples demonstrate the

back” into the y-axis.

essential points on the surface of a sphere.

THE OMEGA CONSTANT

The Omega Constant is defined by the equation

e’ =1

Most often it is considered an instance of the Lambert Function

w

Wz) =we =z

for z = 1. This discussion will approach the Omega Constant differently.
We begin by asking the question, “For what number is the square root equal to its
natural log?” The question can be expressed this way:

\/} = Inx
An equivalent and perhaps more convenient expression:
x =(In x)2
And if we want to generalize the question for any root, we can write:
x =(ln x)R

To investigate the answer to the question using the Desmos graphing calculator, we employ

the equation in the formy = (In x)R. We will also employ

y=x

The student can consider this equation as stating, “What is on the left side of the equation is
equal to what is on the right side of the equation.” Therefore, any line or curve that crosses
this slope m = 1 line fulfills that requirement. (I speak as a high school teacher.) So let’s



graph a number of these equations and see where the cross the y = x line. The following
image graphs the equations:

y=x y = (Inx)’

y=lIlnx 6
) y = (Inx)

y = (Inx) 7
3 y = (Inx)

y = (Inx)

y = (lnx)4
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The graph of the equationsy = (In x)R forR ={1, 2, 3, 4, 5, 6, 7} and the equation
y = x. Image by author. Powered by Desmos.



The reader has already noticed a few matters of interest: that only y = In x [lower red]

does not satisfy the condition (i.e. does not cross the m = 1 line), that all other odd values

2
of R satisfy the condition once, that y = (In x) [blue] satisfies the condition once, and that

all other even values of R satisfy the condition twice. I include a table of values for

investigation.
Points Satisfying y = x

EQUATION VALUE < 1 VALUE > 1
y = (Inx)" 0) ?

y = (Inx)° 0.494866 @

y = (nx)’ @ 6.40567
y = (nx)" 0.442394 417708
y = (nx)° @ 3.65412
y = (nx)° 0.420778 3.41060
y = (nx) ® 3.26856

Our next step will be to graph the associated curve (or line in one instance). For example,

fory = (In x)1 we will graph theliney = x,fory = (In x)2 we will graph the curve

y = X Jfory = (In x)3 we will graph the curve y = X , and so forth. Doing so will allow us

to look for a relationship between the pairs of equations, which can be written as

y = (In x)R

R
y=x

We can also look for patterns in the odd-value R equations, the even-value R equations, and

the full set of equations.
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The full set of all equations. R =1, 2 are inred, R = 3, 4 are in green, R = 5, 6 are in blue, R

= 7,8 are in orange, and R = 9, 10 are in purple. Image by author. Powered by Desmos.

A number of points present themselves rather unsurprisingly. These are (-1, 1), (-1, -1),
1 1
1,1), (e, 1), (?, 1) and (7, -1).
We will presently investigate the Omega Constant. This constant presents itself in

both the odd-value R equations and the even-value R equations, but does so differently. Let

us examine the even exponent equations first as the relationship is most easily observed.
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The equationsy = X" andy = (In x)R forR = {2, 4, 6, 8, 10}. The vertical line (black) is
the Omega Constant x = = 0.567143. Image by author. Powered by Desmos.

For all even exponential values of R, including R = 2, the associated equations connect at
x = Q. The y-value beginsaty = 0.321651 for R = 2 and continues to decrease as R
increases.
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The equationsy = X andy = (In x)R forR = {1, 3, 5, 7, 9}. The vertical line (black) is
the Omega Constant x = Q = 0.567143. Image by author. Powered by Desmos.
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In the case of the odd values for R, let the reader notice that the equations are evenly
spaced on the vertical line x = (). For example, for R = 9 (the purple curves), the two
points of interest are (0. 567143, 0.006071) and (0.567143, -0.006071). As with the
even values of R, the line x = () behaves as a local axis of symmetry. Remarkable!
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1 J
The full set of all equations. R =1, 2 are inred, R = 3, 4 are in green, R = 5, 6 are in blue, R

= 7,8 are in orange, and R = 9, 10 are in purple. This image includes the vertical linex = ()

and marks the critical points. Image by author. Powered by Desmos.

Analyses of the images require us to ask the question, “Do the Omega Points occur where
the slopes of the associated curves are equal or negative inverses?” We can easily

investigate this.

_ R . R0
y,=Unx) - y p
R , R-1

But, wait a minute! There's an easier way! Using the Online Arbitrary Precision Calculator

(2022), we observe that

In (0.56714329040978) = -0.56714329040978

This means that at the point x = (), we have the equations and derivatives:




y, = (0" >y =RED

R . R-1
y,=Q = y'=R(Q)

Therefore, at the point x = Q, the values of the functions Y, and Y, will be equal if R is

even, but the slopes will be the negative inverse of the other (because the exponent of

derivative is odd); conversely, at the point x = (), the values of the functions Y, and Y, will

be the negative inverses of each other if R is odd, but the slopes will be equal (because the

exponent of derivative is even). And this is what we see in the graph.
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