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THE NATURAL LOGARITHM AS A FUNCTION OF A SUM: 
The  Approximation Λ

​ From the di-gamma function, we have: 

 ψ(0) =  ‒γ
𝑒

+
𝑛=1

𝑧−1

∑ 1
𝑛

 ψ(0) ≈ 𝑙𝑛(𝑧) − 1
2𝑧

We have the Euler gamma constant defined as 

 γ
𝑒

= 0. 57721566

We combine the two equations: 

 𝑙𝑛(𝑧) ≈ Λ =
𝑛=1

𝑧−1

∑ 1
𝑛 + 1

2𝑧 − γ
𝑒

We denote the natural log approximation as . The following Python code is programmed Λ
to compare this approximation with the natural log.  

 

 



 

 
 

## Analyzing ln as a sum ## 
import math 
 
counter = 0 ## Initiate 
z = 2 
sigma_sum = 0 
gamma = 0.5772156649 
big_sum = 0 
 
while counter < 25: 
    sigma_sum = sigma_sum + (1 / (z-1)) 
    big_sum = sigma_sum + (1 / (2 * z)) - gamma 
    ln = math.log(z) 
    print (z, "\t", f"{ln:.10f}", "\t", 

f"{big_sum:.10f}", "\t", 
f"{sigma_sum:.10f}", "\t", f"{(1 / 
(2*z)):.10f}", "\t", -0.57721566) 

    z = z + 1 
    counter = counter + 1 

 

 

 



 

To analyze the accuracy of the approximation, we run the code. Note that the first 
column is z, the second is the natural log, the third is the approximation and the fourth, 
fifth, and sixth are the terms of the approximation in the order they appear in the equation 
above. 

 𝑧  𝑙𝑛  Λ  
𝑛=1

𝑧−1

∑ 1
𝑛  1

2𝑧
 γ

𝑒

2 0.69314718 0.672784340 1.000000000 0.250000000 -0.57721566 

3 1.09861229 1.089451007 1.500000000 0.166666667 -0.57721566 

4 1.38629436 1.381117673 1.833333333 0.125000000 -0.57721566 

5 1.60943791 1.606117673 2.083333333 0.100000000 -0.57721566 

6 1.79175947 1.789451007 2.283333333 0.083333333 -0.57721566 

7 1.94591015 1.944212911 2.450000000 0.071428571 -0.57721566 

8 2.07944154 2.078141483 2.592857143 0.062500000 -0.57721566 

9 2.19722458 2.196197038 2.717857143 0.055555556 -0.57721566 

10 2.30258509 2.301752594 2.828968254 0.050000000 -0.57721566 

11 2.39789527 2.397207139 2.928968254 0.045454546 -0.57721566 

12 2.48490665 2.484328352 3.019877345 0.041666667 -0.57721566 

13 2.56494936 2.564456557 3.103210678 0.038461539 -0.57721566 

14 2.63905733 2.638632381 3.180133755 0.035714286 -0.57721566 

15 2.70805020 2.707680000 3.251562327 0.033333333 -0.57721566 

16 2.77258872 2.772263333 3.318228993 0.031250000 -0.57721566 

17 2.83321334 2.832925098 3.380728993 0.029411765 -0.57721566 

18 2.89037176 2.890114640 3.439552523 0.027777778 -0.57721566 

19 2.94443898 2.944208208 3.495108078 0.026315790 -0.57721566 

20 2.99573227 2.995523997 3.547739657 0.025000000 -0.57721566 

21 3.04452244 3.044333521 3.597739657 0.023809524 -0.57721566 

22 3.09104245 3.090870318 3.645358705 0.022727273 -0.57721566 

23 3.13549422 3.135336721 3.690813250 0.021739130 -0.57721566 

24 3.17805383 3.177909184 3.734291511 0.020833333 -0.57721566 

25 3.21887582 3.218742518 3.775958178 0.020000000 -0.57721566 

26 3.25809654 3.257973287 3.815958178 0.019230769 -0.57721566 

 

 



 

NUMERIC ANALYSIS AND INCREASED PRECISION: 
THE  APPROXIMATION Θ

​ We now run the program to display the difference between the natural log and the 
approximation. The  is the difference by subtraction; its inverse is also given. δ

 

 

 

 𝑧  𝑙𝑛  Λ  δ  δ−1

2 0.6931471806 0.6727843400 0.0203628455 49.1090502 

3 1.098612289 1.0894510067 0.0091612869 109.1549703 

4 1.386294361 1.3811176733 0.0051766927 193.17353 

5 1.609437912 1.6061176733 0.0033202440 301.1826841 

6 1.791759469 1.7894510067 0.0023084675 433.1878256 

7 1.945910149 1.9442129114 0.0016972425 589.1909873 

8 2.079441542 2.0781414829 0.0013000637 769.1930653 

9 2.197224577 2.1961970384 0.0010275438 973.1945024 

10 2.302585093 2.3017525940 0.0008325039 1201.195537 

11 2.397895273 2.3972071394 0.0006881383 1453.196306 

12 2.48490665 2.4843283515 0.0005783031 1729.196893 

13 2.564949358 2.5644565567 0.0004928057 2029.197352 

14 2.63905733 2.6386323808 0.0004249537 2353.197718 

15 2.708050201 2.7076799999 0.0003702061 2701.198015 

16 2.772588722 2.7722633332 0.0003253939 3073.198259 

17 2.833213344 2.8329250979 0.0002882510 3469.198462 

18 2.890371758 2.8901146404 0.0002571224 3889.198635 

19 2.944438979 2.9442082077 0.0002307764 4333.198782 

20 2.995732274 2.9955239971 0.0002082813 4801.19891 

21 3.044522438 3.0443335210 0.0001889217 5293.199022 

22 3.091042453 3.0908703175 0.0001721408 5809.199121 

23 3.135494216 3.1353367207 0.0001575002 6349.19921 

24 3.17805383 3.1779091844 0.0001446508 6913.199291 

25 3.218875825 3.2187425178 0.0001333120 7501.199365 

26 3.258096538 3.2579732870 0.0001232559 8113.199434 



 

I have highlighted the inverted deltas which allow us to see the pattern. We will zero-in on  

 δ
5
−1 = 301. 183

Utilizing this value, we can see that the pattern within the inverse deltas can be described 
by the sigma value: 

 σ
1

= 𝑧
5( )2

· δ
5
−1

This allows us to adjust the equation of approximation. Let’s denote the modified 
approximation as . Θ

 Θ =
𝑛=1

𝑧−1

∑ 1
𝑛 + 1

2𝑧 + 1
σ

1
− γ

𝑒

The Python code is modified to include this term. 
 

## Analyzing ln as a sum ## 
import math 
 
counter = 0 ## Initiate 
z = 2 
sigma_sum = 0 
gamma = 0.5772156649 
big_sum = 0 
 
while counter < 25: 
    sigma_sum = sigma_sum + (1 / (z-1)) 
    big_sum = sigma_sum + (1 / (2 * z)) - gamma 
    super_big_sum = big_sum + (1 / ((z / 5)**2 * 

301.1831285792)) 
    ln = math.log(z) 
    print (z, "\t", f"{ln:.10f}", "\t", 

f"{super_big_sum:.10f}", "\t", 
f"{big_sum:.10f}") 

    z = z + 1 
    counter = counter + 1 

 

 



 

This table displays the results of the natural log, the modified approximation , and the Θ
initial approximation . The reader will observe that the modification significantly Λ
improves the precision of the approximation.  
 

 𝑧  𝑙𝑛  Θ  Λ
2 0.6931471806 0.6935358344 0.67278434 

3 1.098612289 1.098673893 1.089451007 

4 1.386294361 1.386305547 1.381117673 

5 1.609437912 1.609437912 1.606117673 

6 1.791759469 1.791756728 1.789451007 

7 1.945910149 1.945906911 1.944212911 

8 2.079441542 2.079438451 2.078141483 

9 2.197224577 2.197221804 2.196197038 

10 2.302585093 2.302582654 2.301752594 

11 2.397895273 2.397893139 2.397207139 

12 2.48490665 2.484904782 2.484328352 

13 2.564949358 2.564947716 2.564456557 

14 2.63905733 2.639055881 2.638632381 

15 2.708050201 2.708048915 2.70768 

16 2.772588722 2.772587575 2.772263333 

17 2.833213344 2.833212316 2.832925098 

18 2.890371758 2.890370832 2.89011464 

19 2.944438979 2.944438141 2.944208208 

20 2.995732274 2.995731512 2.995523997 

21 3.044522438 3.044521743 3.044333521 

22 3.091042453 3.091041817 3.090870318 

23 3.135494216 3.135493632 3.135336721 

24 3.17805383 3.178053292 3.177909184 

25 3.218875825 3.218875327 3.218742518 

26 3.258096538 3.258096077 3.257973287 

The  equation is not quite correct; the use of  is good, but our next analysis will provide Θ δ
5
−1

a better solution. 

 



 

MODULAR ANALYSIS: THE  APPROXIMATION Φ
​ Let us return to the  approximation and examine the inverse deltas. The reader will Λ
notice that, when rounded down to an integer, each inverse delta  takes the form 𝑞

   or    𝑞 = 𝑘 · 12 + 1 𝑞 ≡ 1 𝑚𝑜𝑑 12( ) 

Primes are denoted with shading (where decimals are ignored). 

 

 

 𝑧  𝑙𝑛  Λ  δ−1  𝑞 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛
2 0.6931471806 0.6727843400 49.109  49 = 4 · 12 + 1

3 1.098612289 1.0894510067 109.155  109 = 9 · 12 + 1

4 1.386294361 1.3811176733 193.174  193 = 16 · 12 + 1

5 1.609437912 1.6061176733 301.183  301 = 25 · 12 + 1

6 1.791759469 1.7894510067 433.188  433 = 36 · 12 + 1

7 1.945910149 1.9442129114 589.191  589 = 49 · 12 + 1

8 2.079441542 2.0781414829 769.193  769 = 64 · 12 + 1

9 2.197224577 2.1961970384 973.195  973 = 81 · 12 + 1

10 2.302585093 2.3017525940 1201.196  1201 = 100 · 12 + 1

11 2.397895273 2.3972071394 1453.196  1453 = 121 · 12 + 1

12 2.48490665 2.4843283515 1729.197  1729 = 144 · 12 + 1

13 2.564949358 2.5644565567 2029.197  2029 = 169 · 12 + 1

14 2.63905733 2.6386323808 2353.198  2353 = 196 · 12 + 1

15 2.708050201 2.7076799999 2701.198  2701 = 225 · 12 + 1

16 2.772588722 2.7722633332 3073.198  3073 = 256 · 12 + 1

17 2.833213344 2.8329250979 3469.198  3469 = 289 · 12 + 1

18 2.890371758 2.8901146404 3889.199  3889 = 324 · 12 + 1

19 2.944438979 2.9442082077 4333.199  4333 = 361 · 12 + 1

20 2.995732274 2.9955239971 4801.199  4801 = 400 · 12 + 1

21 3.044522438 3.0443335210 5293.199  5293 = 441 · 12 + 1

22 3.091042453 3.0908703175 5809.199  5809 = 484 · 12 + 1

23 3.135494216 3.1353367207 6349.199  6349 = 529 · 12 + 1

24 3.17805383 3.1779091844 6913.199  6913 = 576 · 12 + 1

25 3.218875825 3.2187425178 7501.199  7501 = 625 · 12 + 1

26 3.258096538 3.2579732870 8113.199  8113 = 676 · 12 + 1



 

This analysis makes clear the imperfection in the previous analysis. The improved 
adjustment is given by the sigma: 

 σ
2

= 𝑧2 · 12 + 1

The new equation, denoted by , is Φ

 Φ =
𝑛=1

𝑧−1

∑ 1
𝑛 + 1

2𝑧 + 1
σ

2
− γ

𝑒

The Python code is augmented to include this improvement. 
 

## Analyzing ln as a sum ## 
import math 
 
counter = 0 ## Initiate 
z = 2 
sigma_sum = 0 
gamma = 0.5772156649 
big_sum = 0 
 
while counter < 25: 
    sigma_sum = sigma_sum + (1 / (z-1)) 
    big_sum = sigma_sum + (1 / (2 * z)) - gamma 
    mod_value = z**2 * 12 + 1 
    super_mod_big_sum = big_sum + (1 / mod_value) 
    super_big_sum = big_sum + (1 / ((z / 5)**2 * 

301.1831285792)) 
    ln = math.log(z) 
    print (z, "\t", f"{ln:.10f}", "\t", 

f"{super_mod_big_sum:.10f}", "\t", 
f"{super_big_sum:.10f}", "\t", 
f"{big_sum:.10f}") 

    z = z + 1 
    counter = counter + 1 

 
 
 
 

 



 

The table displays the improved precision of  with the greatest level of improvement in Φ
the initial  values. 𝑧
 

 𝑧  𝑙𝑛  Φ  Θ  Λ
2 0.693147181 0.693192503 0.6935358344 0.67278434 

3 1.098612289 1.098625319 1.098673893 1.089451007 

4 1.386294361 1.386299021 1.386305547 1.381117673 

5 1.609437912 1.609439933 1.609437912 1.606117673 

6 1.791759469 1.791760476 1.791756728 1.789451007 

7 1.945910149 1.945910704 1.945906911 1.944212911 

8 2.079441542 2.079441873 2.079438451 2.078141483 

9 2.197224577 2.197224788 2.197221804 2.196197038 

10 2.302585093 2.302585233 2.302582654 2.301752594 

11 2.397895273 2.397895371 2.397893139 2.397207139 

12 2.484906650 2.484906721 2.484904782 2.484328352 

13 2.564949358 2.564949410 2.564947716 2.564456557 

14 2.639057330 2.639057370 2.639055881 2.638632381 

15 2.708050201 2.708050233 2.708048915 2.70768 

16 2.772588722 2.772588748 2.772587575 2.772263333 

17 2.833213344 2.833213365 2.833212316 2.832925098 

18 2.890371758 2.890371776 2.890370832 2.89011464 

19 2.944438979 2.944438995 2.944438141 2.944208208 

20 2.995732274 2.995732287 2.995731512 2.995523997 

21 3.044522438 3.044522450 3.044521743 3.044333521 

22 3.091042453 3.091042464 3.091041817 3.090870318 

23 3.135494216 3.135494226 3.135493632 3.135336721 

24 3.178053830 3.178053839 3.178053292 3.177909184 

25 3.218875825 3.218875833 3.218875327 3.218742518 

26 3.258096538 3.258096546 3.258096077 3.257973287 

 

 

 

 



 

The approximation is modeled using the Desmos graphing calculator. 

 

The natural log is displayed in red. The phi approximation is displayed in green. Image by author. 
Powered by Desmos. 

REMARK ON THE MODULAR PHENOMENON 
​ I have tested the output up to  and can confirm that all results conform to 𝑧 = 36

 𝑞 ≡ 1 𝑚𝑜𝑑 12( )

However long this pattern continues, it is well established. For example, where , 𝑧 = 100

 δ
100
−1 = 120001

which is clearly within . 𝑞 = 12 · 𝑘 + 1
​ According to my investigations, the numbers of this subset come in two types: They 
are either the sum of squares or the product of primes, each prime occurring only once. I 
have tested this on all numbers  less than 400 and all numbers occurring 𝑞 ≡ 1 𝑚𝑜𝑑 12( )

in the subset  for all values of  up to 8113. In the first subset, the vast σ
2

= 𝑧2 · 12 + 1 σ
2

majority of numbers are a sum of squares; in the latter, the ratio is closer to equal. 

 



 

FUNCTION FOR THE n APPROXIMATION OF THE EULER GAMMA 
​ We can plot the following functions: 

 𝑦 =  𝑙𝑛 𝑥

 𝑦 =  
𝑛 = 1

𝑥

∑ 1
𝑛

 𝑦 = 𝑙𝑛 𝑥 −
𝑛 = 1

𝑥

∑ 1
𝑛

The result is the following graph: 
 

 
The natural log is displayed in red. The summation function is displayed in blue. The 

difference is displayed in purple. Image by author. Powered by Desmos. 
 
The reader will notice that the right edge of the difference tends towards  corresponding γ

𝑒

to some  . This allows us to write a program to tease out only these leading-edge 𝑛 + 0. 5
values for any  . I include a Python version of the program here. 𝑛

 

 



 

 
 

### ESTIMATION OF GAMMA ETA 
import math 
 
### Initiate Values 
harmonic = 0 
ln = 0 
gamma_eta = 0 
go = 1 
 
while go == True: 
     
    n = int(input("To what value of n the gamma? ")) 
     
    if n == 0:   ### End program condition 
        go = 0 
        print ("End of line.") 
        break 
     
    ### Calculate Values 
    harmonic = 0 
    for i in range(1, n + 1): 
        harmonic = harmonic + 1 / i 
    ln = math.log(n + 0.5) 
    gamma_eta = ln - harmonic 
 
    ### Print result in columns up to 10 decimal places 
    print(n, "\t", f"{harmonic:.10}", "\t", f"{ln:.10}", 

"\t", f"{gamma_eta:.10}") 
 

 

 

 

 

 

 



 

I include sample outputs from the program: 

 

To what value of n the gamma? 10 

10 ​  2.928968254 ​  2.351375257 ​  -0.5775929968 

To what value of n the gamma? 20 

20 ​  3.597739657 ​  3.020424886 ​  -0.577314771 

To what value of n the gamma? 100 

100 ​ 5.187377518 ​  4.610157727 ​  -0.5772197901 

To what value of n the gamma? 200 

200 ​ 5.878030948 ​  5.300814247 ​  -0.5772167014 

To what value of n the gamma? 300 

300 ​ 6.28266388 ​  5.705447754 ​  -0.5772161263 

To what value of n the gamma? 1000 

1000  7.485470861 ​  6.908255154 ​  -0.5772157065 

 

The reader will observe the result that as  approaches infinity, the limit approaches the 𝑛
Euler gamma constant. 

A CASE FOR THE LOGARITHMS OF NEGATIVE ARGUMENTS AS “DEFINED” 
​ In orthodox practice, the logarithms of negative numbers are “undefined.” This is 
due to the fact that the negative arguments lead to impossible contradictions. Yet here I will 
argue that negative arguments are possible. If we allow the natural logarithm to be defined 
as 

 𝑙𝑛(𝑧) =
𝑛=1

𝑧−1

∑ 1
𝑛 + 1

2𝑧 + 1

𝑧2·12+1
− γ

𝑒

then, analyzing each component, it is quite clear that each component can have a negative 

 



 

value. Clearly, the second, third, and fourth terms can have negative values. The sum may 
have a negative value as well—for example, as if summing backwards on the number line by 
using negative values for  and —but this would equate to simply completing the sum in 𝑛 𝑧
the usual way and multiplying the result by negative one. So then, the result would be 

 𝑙𝑛(‒𝑧) = ‒
𝑛=1

𝑧−1

∑ 1
𝑛 − 1

2𝑧 − 1

𝑧2·12+1
+ γ

𝑒

To examine what this might mean visually, we can investigate the Euler identity: 

 𝑒𝑖π =  ‒1

We use this identity to understand logs: 

 𝑙𝑛 𝑒𝑖π( ) = 𝑙𝑛 ‒1( )

 𝑖π = 𝑙𝑛 ‒1( )

Generalizing for any value : 𝑥

 𝑙𝑛 ‒1( ) = 𝑖π

 𝑙𝑛 𝑥( ) + 𝑙𝑛 ‒1( ) = 𝑙𝑛 𝑥( ) + 𝑖π

 𝑙𝑛 ‒𝑥( ) = 𝑙𝑛 𝑥( ) + 𝑖π

What remains is to interpret the meaning of  in the final equation. It is understood that  𝑖π 𝑖
signifies rotation and that  represents half of a complete rotation; therefore,  is π 𝑖π
equivalent to a flip. This is supported by the idea that 

 𝑙𝑛 ‒1( ) = 𝑖π

 𝑙𝑛 𝑖2( ) = 𝑖π

 2 𝑙𝑛 𝑖 = 𝑖π

 𝑙𝑛 𝑖 = 𝑖 π
2

where the latter equation represents a 90 degree rotation. So if a 180 degree rotation 
represents a flip, it remains to ask whether 

 𝑙𝑛 ‒𝑥( ) = ‒ 𝑙𝑛(𝑥)

 



 

indicates a vertical or horizontal flip. If we resort to the initial argument—that of 
multiplying the four terms of the  approximation by negative one—then a vertical flip Φ
seems to be the result as imaged in this graph. 

 
The  approximation and the natural log are displayed in green; their negative Φ

counterparts in red. Image by author. Powered by Desmos. 

The astute mathematician may argue that this is merely a special case of complex 
logarithms, and it is difficult to argue against that. In any case, the result is that negative 
numbers are replaced with rotations such that the contradictions inherent in negative 
logarithmic arguments are removed. 

EULER’S e AS THE SURFACE OF A SPHERE 
​ We have observed above the following: 

 𝑒𝑖π =  ‒1

 𝑙𝑛 𝑒𝑖π( ) = 𝑙𝑛 ‒1( )

 𝑙𝑛 𝑥( ) + 𝑙𝑛 ‒1( ) = 𝑙𝑛 𝑥( ) + 𝑖π

 𝑙𝑛 ‒𝑥( ) = 𝑙𝑛 𝑥( ) + 𝑖π

 



 

Notice that the final equation can be expressed in two dimensions as shown on the graph. 
So then, what is the dimensionality of the Euler Identity? Generally, we find that taking the 
natural log of an expression reduces dimensionality because it produces a numeric result. 
Yet if the reduced dimension is two, then I will posit that the original dimension is three. 
​ Let us first be reminded from where Euler’s Identity is derived. In 1712 Roger Cotes, 
in his attempt to find the surface area of an ellipsoid, found in the relationship of two of his 
equations, that 

 𝑙𝑛 (𝑐𝑜𝑠 ϕ +  𝑖 𝑠𝑖𝑛 ϕ) = 𝑖ϕ

Euler’s Formula can be derived directly from this equation in two steps: 

 𝑒𝑙𝑛 (𝑐𝑜𝑠 ϕ + 𝑖 𝑠𝑖𝑛 ϕ) = 𝑒𝑖ϕ   →    𝑐𝑜𝑠 ϕ +  𝑖 𝑠𝑖𝑛 ϕ = 𝑒𝑖ϕ

Euler, seemingly unaware of Cote’s result, published the formula in 1748 in the form,  

 𝑒𝑖𝑥 = 𝑐𝑜𝑠 𝑥 + 𝑖 𝑠𝑖𝑛 𝑥

which he derived by arranging series for , sine and cosine (Wilson, 2017, p.12).  𝑒
Here I use theta as it is commonly used for angles in education. 

 𝑒𝑖θ = 𝑐𝑜𝑠 θ + 𝑖 𝑠𝑖𝑛 θ

A special case occurs when : θ = π

 𝑒𝑖π = 𝑐𝑜𝑠 π + 𝑖 𝑠𝑖𝑛 π = 1 + 0 = 1

 𝑒𝑖π − 1 = 0

This is the famous Euler’s Identity. 
I will now demonstrate how this formula represents the surface of a sphere. 

Consider a three-dimensional reference frame where  is vertical,  is horizontal, and y is 𝑖 𝑥
depth, where  is “out of the page” and  is “into the page.” Imagine the radius as a + 𝑦 − 𝑦
vector originating from the origin. Finally, consider the postulation that  

 𝑐𝑜𝑠 (𝑖θ) = 𝑖 𝑐𝑜𝑠 θ

The logic is: Since  is a rotation, the argument  represents a 90 degree rotation, and this 𝑖 𝑖θ( )
does not vary inside or outside of the trigonometric argument. 

Using this postulation, a chart can be built with various angles. The value r is 
included as a proof of a spherical space, since the radius r of a unit sphere must always 
equal 1. The value  is used in place of .  2π θ = 0

 



 

 ;  𝑒𝑖θ = 𝑐𝑜𝑠 θ + 𝑖 𝑠𝑖𝑛 θ 𝑟 = 𝑎2 + 𝑏2| |
 θ RESULT r  θ RESULT r 

 π
4  2

2 + 2
2 𝑖 1  π

2  0 + 𝑖 1 

 π
4 𝑖  2

2 𝑖 − 2
2 1  π

2 𝑖  0𝑖 − 1 1 

 − π
4  2

2 − 2
2 𝑖 1  − π

2  − 0 − 𝑖 1 

 − π
4 𝑖  2

2 𝑖 + 2
2 1  − π

2 𝑖  − 0𝑖 + 1 1 

 3π
4  − 2

2 + 2
2 𝑖 1  π  − 1 + 0𝑖 1 

 3π
4 𝑖  − 2

2 𝑖 − 2
2 1  π𝑖  − 𝑖 − 0 1 

 − 3π
4  − 2

2 − 2
2 𝑖 1  − π  − 1 − 0𝑖 1 

 − 3π
4 𝑖  − 2

2 𝑖 + 2
2 1  − π𝑖  𝑖 + 0 1 

 5π
4  − 2

2 − 2
2 𝑖 1  3π

2  0 − 𝑖 1 

 5π
4 𝑖  − 2

2 𝑖 + 2
2 1  3π

2 𝑖  0𝑖 + 1 1 

 − 5π
4  − 2

2 + 2
2 𝑖 1  − 3π

2  0 + 𝑖 1 

 − 5π
4 𝑖  − 2

2 𝑖 − 2
2 1  − 3π

2 𝑖  − 0𝑖 − 𝑖 1 

 7π
4  2

2 − 2
2 𝑖 1  2π  1 + 0𝑖 1 

 7π
4 𝑖  2

2 𝑖 + 2
2 1  2π𝑖  𝑖 − 0 1 

 − 7π
4  2

2 + 2
2 𝑖 1  − 2π  1 − 0𝑖 1 

 − 7π
4 𝑖  2

2 𝑖 − 2
2 1  − 2π𝑖  − 𝑖 + 0𝑖 1 

 

 



 

Let’s look at how the math works beginning with the  variants. First,  results in , and π
2

π
2 𝑖

this is correct as it is the standard -position—that is, the vertical “top” of the unit circle; 𝑦
 results in  for , indicating a rotation from the “top” that circles “into the page”;  π

2 𝑖 –1 𝑦 – π
2

results in , the vertical “bottom” of the circle; and  results in 1 for , a rotation from –𝑖 – π
2 𝑖 𝑦

the “bottom out from the page” or from the “top” circling contrariwise “out of the page”—it 
all depends on if the reader wants to treat the  or the  as negative. To observe the π

2 𝑖

rotations from cosine, we can examine the  variants. The result of  is  for , which θ = π π –1 𝑥
is correct; for , the result is , indicating a counterclockwise rotation; for , the result is π𝑖 –𝑖 –π

 for , which is correct; and for , the result is , indicating a clockwise rotation from .  –1 𝑥 –π𝑖 𝑖 –1
I will now reduce the table by eliminating negative angles. 
 

 ;  𝑒𝑖θ = 𝑐𝑜𝑠 θ + 𝑖 𝑠𝑖𝑛 θ 𝑟 = 𝑎2 + 𝑏2| |
 θ RESULT r  θ RESULT r 

 π
4  2

2 + 2
2 𝑖 1  π

2  0 + 𝑖 1 

 π
4 𝑖  2

2 𝑖 − 2
2 1  π

2 𝑖  0𝑖 − 1 1 

 3π
4  − 2

2 + 2
2 𝑖 1  π  − 1 + 0𝑖 1 

 3π
4 𝑖  − 2

2 𝑖 − 2
2 1  π𝑖  − 𝑖 − 0 1 

 5π
4  − 2

2 − 2
2 𝑖 1  3π

2  0 − 𝑖 1 

 5π
4 𝑖  − 2

2 𝑖 + 2
2 1  3π

2 𝑖  0𝑖 + 1 1 

 7π
4  2

2 − 2
2 𝑖 1  2π  1 + 0𝑖 1 

 7π
4 𝑖  2

2 𝑖 + 2
2 1  2π𝑖  𝑖 − 0 1 

 
This table is helpful because it contains only the 14 points of interest (six points 
representing the top, bottom, front, back, and side points, and two planar sets of four points 
between each of those pairs). Two redundancies occur as  and  result in both sine and 𝑖 –𝑖

 



 

cosine rotations. For , the  position is  “to the right” and the  position is  θ = π
4 𝑥 2

2 𝑖 2
2 𝑖

“up,” which is correct;  results in  (  rotates “up”) and  “back” into the -axis. π
4 𝑖 2

2 𝑖 𝑥 − 2
2 𝑦

And so forth.  
I apologize for the poor wording of this section. I understand that, mathematically, 

examples do not constitute a proof. But I do believe these examples demonstrate the 
essential points on the surface of a sphere. 

THE OMEGA CONSTANT 
​ The Omega Constant is defined by the equation 

 Ω𝑒Ω = 1

Most often it is considered an instance of the Lambert Function 

 𝑊(𝑧) = 𝑤𝑒𝑤 = 𝑧

for . This discussion will approach the Omega Constant differently. 𝑧 = 1
​ We begin by asking the question, “For what number is the square root equal to its 
natural log?” The question can be expressed this way: 

 𝑥 = 𝑙𝑛 𝑥

An equivalent and perhaps more convenient expression: 

 𝑥 = 𝑙𝑛 𝑥( )2

And if we want to generalize the question for any root, we can write: 

 𝑥 = 𝑙𝑛 𝑥( )𝑅

To investigate the answer to the question using the Desmos graphing calculator, we employ 

the equation in the form . We will also employ 𝑦 = 𝑙𝑛 𝑥( )𝑅

 𝑦 = 𝑥

The student can consider this equation as stating, “What is on the left side of the equation is 
equal to what is on the right side of the equation.” Therefore, any line or curve that crosses 
this slope  line fulfills that requirement. (I speak as a high school teacher.) So let’s 𝑚 = 1

 



 

graph a number of these equations and see where the cross the  line. The following 𝑦 = 𝑥
image graphs the equations: 
 

 𝑦 = 𝑥
 𝑦 = 𝑙𝑛 𝑥

 𝑦 = 𝑙𝑛 𝑥( )2

 𝑦 = (𝑙𝑛 𝑥)3

 𝑦 = (𝑙𝑛 𝑥)4

 𝑦 = (𝑙𝑛 𝑥)5

 𝑦 = (𝑙𝑛 𝑥)6

 𝑦 = (𝑙𝑛 𝑥)7

 

 

The graph of the equations  for  and the equation 𝑦 = (𝑙𝑛 𝑥)𝑅 𝑅 = 1,  2,  3,  4,  5,  6,  7{ }
. Image by author. Powered by Desmos. 𝑦 = 𝑥

 



 

 
The reader has already noticed a few matters of interest: that only  [lower red] 𝑦 = 𝑙𝑛 𝑥
does not satisfy the condition (i.e. does not cross the  line), that all other odd values 𝑚 = 1

of  satisfy the condition once, that  [blue] satisfies the condition once, and that 𝑅 𝑦 = (𝑙𝑛 𝑥)2

all other even values of  satisfy the condition twice. I include a table of values for 𝑅
investigation. 
 

Points Satisfying y = x 

EQUATION  𝑉𝐴𝐿𝑈𝐸 < 1  𝑉𝐴𝐿𝑈𝐸 > 1

 𝑦 = (𝑙𝑛 𝑥)1 ∅ ∅ 

 𝑦 = (𝑙𝑛 𝑥)2 0.494866 ∅ 

 𝑦 = (𝑙𝑛 𝑥)3 ∅ 6.40567 

 𝑦 = (𝑙𝑛 𝑥)4 0.442394 4.17708 

 𝑦 = (𝑙𝑛 𝑥)5 ∅ 3.65412 

 𝑦 = (𝑙𝑛 𝑥)6 0.420778 3.41060 

 𝑦 = (𝑙𝑛 𝑥)7 ∅ 3.26856 

 
Our next step will be to graph the associated curve (or line in one instance). For example, 

for  we will graph the line  , for  we will graph the curve 𝑦 = (𝑙𝑛 𝑥)1 𝑦 = 𝑥 𝑦 = (𝑙𝑛 𝑥)2

 , for  we will graph the curve  , and so forth. Doing so will allow us 𝑦 = 𝑥2 𝑦 = (𝑙𝑛 𝑥)3 𝑦 = 𝑥3

to look for a relationship between the pairs of equations, which can be written as 

 𝑦 = (𝑙𝑛 𝑥)𝑅

 𝑦 = 𝑥𝑅

We can also look for patterns in the odd-value R equations, the even-value R equations, and 
the full set of equations. 

 



 

 
 

 
The full set of all equations. R = 1, 2 are in red, R = 3, 4 are in green, R = 5, 6 are in blue, R 

= 7, 8 are in orange, and R = 9, 10 are in purple. Image by author. Powered by Desmos. 
 
A number of points present themselves rather unsurprisingly. These are , , (–1, 1) (–1, –1)

, ,  and . (1, 1) (𝑒, 1) 1
𝑒 , 1( ) 1

𝑒 , –1( )
​ We will presently investigate the Omega Constant. This constant presents itself in 
both the odd-value R equations and the even-value R equations, but does so differently. Let 
us examine the even exponent equations first as the relationship is most easily observed. 
 

 

 



 

 

 

The equations  and  for . The vertical line (black) is 𝑦 = 𝑥𝑅 𝑦 = (𝑙𝑛 𝑥)𝑅 𝑅 = 2,  4,  6,  8,  10{ }
the Omega Constant  . Image by author. Powered by Desmos. 𝑥 = Ω = 0. 567143

 
For all even exponential values of R , including  , the associated equations connect at 𝑅 = 2

. The -value begins at  for  and continues to decrease as R 𝑥 = Ω 𝑦 𝑦 = 0. 321651 𝑅 = 2
increases. 
 
 

 

 



 

 

The equations  and  for . The vertical line (black) is 𝑦 = 𝑥𝑅 𝑦 = (𝑙𝑛 𝑥)𝑅 𝑅 = 1,  3,  5,  7,  9{ }
the Omega Constant  . Image by author. Powered by Desmos. 𝑥 = Ω = 0. 567143

 
In the case of the odd values for R , let the reader notice that the equations are evenly 
spaced on the vertical line . For example, for  (the purple curves), the two 𝑥 = Ω 𝑅 = 9
points of interest are  and . As with the (0. 567143,  0. 006071) (0. 567143,  –0. 006071)
even values of R, the line  behaves as a local axis of symmetry. Remarkable! 𝑥 = Ω

 

 



 

 

 
The full set of all equations. R = 1, 2 are in red, R = 3, 4 are in green, R = 5, 6 are in blue, R 

= 7, 8 are in orange, and R = 9, 10 are in purple. This image includes the vertical line  𝑥 = Ω
and marks the critical points. Image by author. Powered by Desmos. 

 
Analyses of the images require us to ask the question, “Do the Omega Points occur where 
the slopes of the associated curves are equal or negative inverses?” We can easily 
investigate this. 

 𝑦
1

= (𝑙𝑛 𝑥)𝑅   →    𝑦
1
' = 𝑅 (𝑙𝑛 𝑥)𝑅−1

𝑥

 𝑦
2

= 𝑥𝑅   →    𝑦
2
' = 𝑅𝑥𝑅−1

But, wait a minute! There's an easier way! Using the Online Arbitrary Precision Calculator 
(2022), we observe that 

 𝑙𝑛 0. 56714329040978( ) =  –0. 56714329040978

This means that at the point , we have the equations and derivatives: 𝑥 = Ω
 

 



 

 𝑦
1

= (–Ω)𝑅   →    𝑦
1
' = 𝑅(–Ω)𝑅−1

 𝑦
2

= Ω𝑅   →    𝑦
2
' = 𝑅(Ω)𝑅−1

Therefore, at the point  , the  values of the functions  and  will be equal if  is 𝑥 = Ω 𝑦
1

𝑦
2

𝑅

even, but the slopes will be the negative inverse of the other (because the exponent of 
derivative is odd); conversely, at the point  , the values of the functions  and  will 𝑥 = Ω 𝑦

1
𝑦

2

be the negative inverses of each other if  is odd, but the slopes will be equal (because the 𝑅
exponent of derivative is even). And this is what we see in the graph. 
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